distribution function for each of the coefficients  $C_{m,n}$ , the energy distribution function including a first factor based upon the magnitude of the Gabor coefficient, and a second factor varying according to the localized discrete window function of the Gabor transform; and

means for determining an update region for each coefficient  $C_{m,n}$  in response to the first factor, wherein the distribution for each coefficient is computed within the determined update region; 10 and

a second processor, coupled to the first processor, which processes the energy distribution function.

48. A signal analyzer, comprising:

a source of a sequence of digital signals representative 15

of an input signal;

an input buffer system connected to receive the sequence supplied by the source;

- a first processor, coupled to the input buffer which receives the sequence from the input buffer, wherein the input buffer supplies the sequence to the first processor in a set of overlapping frames, wherein the first processor computes orthogonal-like discrete Gabor transform coefficients  $C_{m,n}$  in response to the sequence, and a time-varying spectrum of input signal energy in response to the coefficients; and
- a second processor, coupled to the first processor, which processes the spectrum.

\* \* \* \* \*

20

25

30

35

40

45

50

55

60